If you are doing work with Django then learn this post it is very usefully
Any type of package needs to install for using many to many relationships in Django
Here...Any type of package needs to install for using many to many relationships in Django
There are some excellent idea to help you make the new concepts, you are learning
as a beginner to Any type of package needs to
install for using many to many relationships in Django explain step by step here...
=>Django application has a GM2MField that combines the features
of the standard Django “ManyToManyField” and “GenericForeignKey”.
=>Installation:
>> pip install django-gm2m
=>Django’s contenttype framework must be
(django.contrib.contenttypes) mentionned
in the INSTALLED_APPS.
INSTALLED_APPS = [
...
'django.contrib.contenttypes',
...
'gm2m',
]
=>Uses Of django-gm2m:
1.reverse relations
2.prefetching
3. Allows you to customize the deletion behaviour
In this example, an article can be published in multiple Publication
objects and a Publication has multiple Article objects:
from Django.db import models
class Publication(models.Model):
title = models.CharField(max_length=30)
class Meta:
ordering = ['title']
def __str__(self):
return self.title
class Article(models.Model):
headline = models.CharField(max_length=100)
publications = models.ManyToManyField(Publication)
class Meta:
ordering = ['headline']
def __str__(self):
return self.headline
What follows are examples of operations that can be performed using the Python API facilities.
Create a few Publications:
>>> p1 = Publication(title='The Python Journal')
>>> p1.save()
>>> p2 = Publication(title='Science News')
>>> p2.save()
>>> p3 = Publication(title='Science Weekly')
>>> p3.save()
=>Create an Article:
>>> a1 = Article(headline='Django lets you build Web apps easily')
You can’t associate it with a Publication until it’s been saved:
>>> a1.publications.add(p1)
Traceback (most recent call last):
ValueError: "<Article: Django lets you build Web apps easily>" needs to have a value for field "id" before this many-to-many relationship can be used.
Save it!
>>> a1.save()
Associate the Article with a Publication:
>>> a1.publications.add(p1)
Create another Article, and set it to appear in the Publications:
>>> a2 = Article(headline='NASA uses Python')
>>> a2.save()
>>> a2.publications.add(p1, p2)
>>> a2.publications.add(p3)
Adding a second time is OK, it will not duplicate the relation:
>>> a2.publications.add(p3)
Adding an object of the wrong type raises TypeError:
>>> a2.publications.add(a1)
Traceback (most recent call last):
TypeError: 'Publication' instance expected
Create and add a Publication to an Article in one step using create():
>>> new_publication = a2.publications.create(title='Highlights for Children')
Article objects have access to their related Publication objects:
>>> a1.publications.all()
<QuerySet [<Publication: The Python Journal>]>
>>> a2.publications.all()
<QuerySet [<Publication: Highlights for Children>, <Publication: Science News>, <Publication: Science Weekly>, <Publication: The Python Journal>]>
Publication objects have access to their related Article objects:
>>> p2.article_set.all()
<QuerySet [<Article: NASA uses Python>]>
>>> p1.article_set.all()
<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses Python>]>
>>> Publication.objects.get(id=4).article_set.all()
<QuerySet [<Article: NASA uses Python>]>
Many-to-many relationships can be queried using lookups across relationships:
>>> Article.objects.filter(publications__id=1)
<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses Python>]>
>>> Article.objects.filter(publications__pk=1)
<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses Python>]>
>>> Article.objects.filter(publications=1)
<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses Python>]>
>>> Article.objects.filter(publications=p1)
<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses Python>]>
>>> Article.objects.filter(publications__title__startswith="Science")
<QuerySet [<Article: NASA uses Python>, <Article: NASA uses Python>]>
>>> Article.objects.filter(publications__title__startswith="Science").distinct()
<QuerySet [<Article: NASA uses Python>]>
The count() function respects distinct() as well:
>>> Article.objects.filter(publications__title__startswith="Science").count()
2
>>> Article.objects.filter(publications__title__startswith="Science").distinct().count()
1
>>> Article.objects.filter(publications__in=[1,2]).distinct()
<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses Python>]>
>>> Article.objects.filter(publications__in=[p1,p2]).distinct()
<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses Python>]>
Reverse m2m queries are supported (i.e., starting at
the table that doesn’t have a ManyToManyField):
>>> Publication.objects.filter(id=1)
<QuerySet [<Publication: The Python Journal>]>
>>> Publication.objects.filter(pk=1)
<QuerySet [<Publication: The Python Journal>]>
>>> Publication.objects.filter(article__headline__startswith="NASA")
<QuerySet [<Publication: Highlights for Children>, <Publication: Science News>, <Publication: Science Weekly>, <Publication: The Python Journal>]>
>>> Publication.objects.filter(article__id=1)
<QuerySet [<Publication: The Python Journal>]>
>>> Publication.objects.filter(article__pk=1)
<QuerySet [<Publication: The Python Journal>]>
>>> Publication.objects.filter(article=1)
<QuerySet [<Publication: The Python Journal>]>
>>> Publication.objects.filter(article=a1)
<QuerySet [<Publication: The Python Journal>]>
>>> Publication.objects.filter(article__in=[1,2]).distinct()
<QuerySet [<Publication: Highlights for Children>, <Publication: Science News>, <Publication: Science Weekly>, <Publication: The Python Journal>]>
>>> Publication.objects.filter(article__in=[a1,a2]).distinct()
<QuerySet [<Publication: Highlights for Children>, <Publication: Science News>, <Publication: Science Weekly>, <Publication: The Python Journal>]>
Excluding a related item works as you would expect, too (although the SQL involved is a little complex):
>>> Article.objects.exclude(publications=p2)
<QuerySet [<Article: Django lets you build Web apps easily>]>
If we delete a Publication, its Articles won’t be able to access it:
>>> p1.delete()
>>> Publication.objects.all()
<QuerySet [<Publication: Highlights for Children>, <Publication: Science News>, <Publication: Science Weekly>]>
>>> a1 = Article.objects.get(pk=1)
>>> a1.publications.all()
<QuerySet []>
If we delete an Article, its Publications won’t be able to access it:
>>> a2.delete()
>>> Article.objects.all()
<QuerySet [<Article: Django lets you build Web apps easily>]>
>>> p2.article_set.all()
<QuerySet []>
Adding via the ‘other’ end of an m2m:
>>> a4 = Article(headline='NASA finds intelligent life on Earth')
>>> a4.save()
>>> p2.article_set.add(a4)
>>> p2.article_set.all()
<QuerySet [<Article: NASA finds intelligent life on Earth>]>
>>> a4.publications.all()
<QuerySet [<Publication: Science News>]>
Adding via the other end using keywords:
>>> new_article = p2.article_set.create(headline='Oxygen-free diet works wonders')
>>> p2.article_set.all()
<QuerySet [<Article: NASA finds intelligent life on Earth>, <Article: Oxygen-free diet works wonders>]>
>>> a5 = p2.article_set.all()[1]
>>> a5.publications.all()
<QuerySet [<Publication: Science News>]>
Removing Publication from an Article:
>>> a4.publications.remove(p2)
>>> p2.article_set.all()
<QuerySet [<Article: Oxygen-free diet works wonders>]>
>>> a4.publications.all()
<QuerySet []>
And from the other end:
>>> p2.article_set.remove(a5)
>>> p2.article_set.all()
<QuerySet []>
>>> a5.publications.all()
<QuerySet []>
Relation sets can be set:
>>> a4.publications.all()
<QuerySet [<Publication: Science News>]>
>>> a4.publications.set([p3])
>>> a4.publications.all()
<QuerySet [<Publication: Science Weekly>]>
Relation sets can be cleared:
>>> p2.article_set.clear()
>>> p2.article_set.all()
<QuerySet []>
And you can clear from the other end:
>>> p2.article_set.add(a4, a5)
>>> p2.article_set.all()
<QuerySet [<Article: NASA finds intelligent life on Earth>, <Article: Oxygen-free diet works wonders>]>
>>> a4.publications.all()
<QuerySet [<Publication: Science News>, <Publication: Science Weekly>]>
>>> a4.publications.clear()
>>> a4.publications.all()
<QuerySet []>
>>> p2.article_set.all()
<QuerySet [<Article: Oxygen-free diet works wonders>]>
Recreate the Article and Publication we have deleted:
>>> p1 = Publication(title='The Python Journal')
>>> p1.save()
>>> a2 = Article(headline='NASA uses Python')
>>> a2.save()
>>> a2.publications.add(p1, p2, p3)
Bulk delete some Publications - references to deleted publications should go:
>>> Publication.objects.filter(title__startswith='Science').delete()
>>> Publication.objects.all()
<QuerySet [<Publication: Highlights for Children>, <Publication: The Python Journal>]>
>>> Article.objects.all()
<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA finds intelligent life on Earth>, <Article: NASA uses Python>, <Article: Oxygen-free diet works wonders>]>
>>> a2.publications.all()
<QuerySet [<Publication: The Python Journal>]>
Bulk delete some articles - references to deleted objects should go:
>>> q = Article.objects.filter(headline__startswith='Django')
>>> print(q)
<QuerySet [<Article: Django lets you build Web apps easily>]>
>>> q.delete()
After the delete(), the QuerySet cache needs to be cleared, and the referenced objects should be gone:
>>> print(q)
<QuerySet []>
>>> p1.article_set.all()
<QuerySet [<Article: NASA uses Python>]>
Conclusion-In this tutorial you will have learned how Any type of package needs to install for
using many to many relationships in Django
So hope you liked these tutorials. If you have any questions or suggestions related to Django please comment below and let us know.
Finally, if you find this post informative, then share it with
your friends on Facebook, Twitter, Instagram.
Thank you...
Comments
Post a Comment